Quintilien

Quis, quid, ubi, quibus auxiliis, cur, quomodo, quando

Informatique, électronique et train miniature (3/4)

Page classée dans : Microcontrôleurs et Micropython
Page précédente : Informatique, électronique et train miniature (2/4)
Page suivante : Informatique, électronique et train miniature (4/4)

Mise en pratique

Vue d'ensemble

Dans un souci de réalisme, un joystick est utilisé.

Il est censé simuler

Composants et schéma de raccordement

Réalisation pratique

Quelques précautions :

Code Micropython (main.py)

# Copyright (C) 2018-2023 PhS & Quintilien
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
#
# Rev. 2.12 - 23 sept. 2023 
#

from machine import Pin, ADC, Timer, I2C, UART, PWM
import time
import ssd1306


# pwm
pwm_ena = PWM(machine.Pin(18))
pwm_ena.freq(500)
pwm_in1 = machine.Pin(17, Pin.OUT)
pwm_in2 = machine.Pin(16, Pin.OUT)


# joystick (on 3,3 V !)
adc0 = ADC(Pin(26, mode=Pin.IN))              # joystick X
adc1 = ADC(Pin(27, mode=Pin.IN))              # joystick Y
adc2 = Pin(28, Pin.IN, Pin.PULL_UP)           # joystick switch  


# i2C
i2c = I2C(0, sda=machine.Pin(8), scl=machine.Pin(9), freq=400000)
print ('i2C found : ',i2c.scan())
lcd = ssd1306.SSD1306_I2C( 128, 64, i2c )

lcd.text("Ready", 0,0,1)   # column, ligne * 10, 1
lcd.show()  # Display!


# matrix for big display
big_num = [
    [
        [ 0,1,1,1,0 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,0 ]
    ] ,
    [
        [ 0,0,1,0,0 ] , 
        [ 0,1,1,0,0 ] , 
        [ 1,0,1,0,0 ] , 
        [ 0,0,1,0,0 ] , 
        [ 0,0,1,0,0 ] , 
        [ 0,0,1,0,0 ] , 
        [ 0,0,1,0,0 ] , 
        [ 1,1,1,1,1 ]
    ] ,
    [
        [ 0,1,1,1,0 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,0,0,1,0 ] , 
        [ 0,0,1,0,0 ] , 
        [ 0,1,0,0,0 ] , 
        [ 1,0,0,0,0 ] , 
        [ 1,1,1,1,1 ]
    ] ,
    [
        [ 0,1,1,1,0 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,0,0,0,1 ] , 
        [ 0,0,1,1,0 ] , 
        [ 0,0,0,0,1 ] , 
        [ 0,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,0 ]  
    ] ,
    [
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,1 ] , 
        [ 0,0,0,0,1 ] , 
        [ 0,0,0,0,1 ] , 
        [ 0,0,0,0,1 ]  
    ] ,
    [
        [ 1,1,1,1,1 ] , 
        [ 1,0,0,0,0 ] , 
        [ 1,0,0,0,0 ] , 
        [ 1,1,1,1,0 ] , 
        [ 0,0,0,0,1 ] , 
        [ 0,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,0 ]  
    ] ,
    [
        [ 0,1,1,1,0 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,0 ] , 
        [ 1,1,1,1,0 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,0 ]  
    ] ,
    [
        [ 1,1,1,1,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,0,0,0,1 ] , 
        [ 0,0,0,1,0 ] , 
        [ 0,0,1,0,0 ] , 
        [ 0,1,0,0,0 ] , 
        [ 0,1,0,0,0 ] , 
        [ 0,1,0,0,0 ]  
    ] ,
    [
        [ 0,1,1,1,0 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,0 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,0 ]  
    ] ,
    [
        [ 0,1,1,1,0 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,1 ] , 
        [ 0,0,0,0,1 ] , 
        [ 1,0,0,0,1 ] , 
        [ 0,1,1,1,0 ]  
    ]
    ]

def display_big_numbers(v):
    v2 = list()
    for tmp in (str(v)):
        v2.append(int(tmp))
    v2.reverse()    
    # fill_rect( x, y, w, h, c ) 
    lcd.fill_rect( 10,20,118,40, 0 )

    for p, n in enumerate ( v2 ): # p = position, n = digit to display
        for l in range (8):
            for c in range(5):
                if big_num[n][l][c] == 1:
                    lcd.fill_rect( c*5+(4-p)*30-20,l*5+20, 5, 5, 1 )
    lcd.show()  


tictac = 1

def running(x):
    global tictac
    if tictac == 1:      
        lcd.fill_rect( 0,59,4,4,1 ) # fill_rect( x, y, w, h, c )
    else:    
        lcd.fill_rect( 0,59,4,4,0 ) # fill_rect( x, y, w, h, c )
    tictac = tictac * (-1)
    lcd.show()


def set_speed(number=0, speed=0, acceleration=10, deceleration=12, direction=0):
    global vc, di, vt, ac, dc, dt
    vt[number] = speed
    if direction != 0:
        dt[number] = direction
    if vc[number] < speed:
        ac[number] = acceleration
        dc[number] = 0
    if vc[number] > speed:    
        ac[number] = 0
        dc[number] = deceleration


def set_pwm():
    global vc, dac, ddc, vt, ac, dc, di, dt, m1, m2, vp, cja, cjd
    global ch 
    global pwm_ena, pwm_in1, pwm_in2

    if di[ch] == 0:
        pwm_in1.value(0)
        pwm_in2.value(0)
    if di[ch] == 1:
        pwm_in1.value(1)
        pwm_in2.value(0)          
    if di[ch] == -1:
        pwm_in1.value(0)
        pwm_in2.value(1)

    if vc[ch] == 0:
        pwm_ena.duty_u16( 0 )
    else:         
        pwm_ena.duty_u16( ( vc[ch] + 1 ) * 64 - 1 )


def display_ch():
    global di, ch, lcd
    lcd.fill_rect( 110,0,20,10,0 ) # fill_rect( x, y, w, h, c )
    if di[ch] == 0: 
        lcd.text("--", 110,1,1)   # column, line * 10, 1
    if di[ch] == 1: 
        lcd.text("->", 110,1,1)   # column, line * 10, 1
    if di[ch] == -1: 
        lcd.text("<-", 110,1,1)   # column, line * 10, 1


# speed control : settings for freq(PWM) = 500 Hz 
# Code designed to manage 3 locomotives 

ch = 0   # Loco 0 selected

vp      = [0, 0, 0]              # previous speed
vt      = [0, 0, 0]              # target speed
ac      = [0, 0, 0]              # acceleration
dc      = [0, 0, 0]              # deceleration
vc      = [0, 0, 0]              # current speed
di      = [1, 1, 1]              # current direction
dt      = [1, 1, 1]              # target direction

m1      = [250, 250, 250]        # minimum pulse threshold when accelerate
m2      = [250, 250, 250]        # minimum pulse threshold when decelerate
dac     = [10, 10, 10]           # default acceleration
ddc     = [18, 18, 18]           # default deceleration
cja     = [128, 256, 256]        # coeff acceleration joystick 
cjd     = [64, 64, 64]           # coeff deceleration joystick


def speed_control(x):
    global lcd
    global vc, dac, ddc, vt, ac, dc, di, dt, m1, m2, vp, cja, cjd

    jy = int ( ( 32767 - adc1.read_u16() ) / 32 )   # y -1023 -> 0 -> 1023
    if jy > 1000:
        jy = 1023
    if jy <= -1000:            
        jy = -1023
    if jy > -100 and jy < 100:
        jy = 0
    # 
    jx = int ( ( 32767 - adc0.read_u16() ) / -32 )    # x -1023 -> 0 -> 1023   
    if jx > 1000:
        jx = 1023
    if jx <= -1000:            
        jx = -1023
    if jx > -300 and jx < 300:
        jx = 0
    # 
    jsw = adc2.value()
    #
    if jx > 750:
        dt[ch] = 1                            # target direction       
    if jx < -750:
        dt[ch] = -1                           # target direction

    jt = 0                                    # joystick target speed
    ja = 0                                    # joystick acceleration
    jd = 0                                    # joystick deceleration

    if jy > 0:
        jt = jy                               # target speed
        ja = int ( jy / cja[ch] )             # acceleration   ( TO BE "FINE TUNED" )
    if jy < 0:
        jd = int ( jy / cjd[ch] * -1 )        # deceleration


    # designed to manage more than one locomotive simultaneously !
    for i, v in enumerate (vc):        
        if di[i] != dt[i]:                    # changing direction -> stop before !
            vc[i] = 0
            vt[i] = 0
            ac[i] = 0
            dc[i] = 0
            di[i] = dt[i]
            set_pwm()
        if di[i] != 0:
            if i == ch:                       # joystick activated
                if v < jt and ja !=0 :        # accelerate with joystick
                    if v + ja > jt:
                        vc[i] = jt
                    else:
                        if vc[i] + ja < m1[i]:
                            vc[i] = m1[i]
                        else:
                            vc[i] = v + ja

                if v > vt[i] and jd !=0 :     # decelerate with joystick
                    if v - jd < jt:
                        vc[i] = jt
                    else:
                        vc[i] = vc[i] - jd
                    if vc[i] < m2[i]:         # if target < minimum pulse  => target = min
                        vc[i] = 0


            if v < vt[i] and ac[i] !=0 :      # accelerate with external instruction
                if v + ac[i] >= vt[i]:
                    vc[i] = vt[i]
                    vt[i] = 0
                    ac[i] = 0
                else:
                    if vc[i] + ac[i] < m1[i]:
                        vc[i] = m1[i]
                    else:
                        vc[i] = vc[i] + ac[i]

            if v > vt[i] and dc[i] !=0 :      # decelerate 
                if v - dc[i] <= vt[i]:
                    vc[i] = vt[i]
                    vt[i] = 0
                    dc[i] = 0
                else:
                    vc[i] = vc[i] - dc[i]
                if vc[i] < m2[i]:             # if target < minimum pulse  => target = min
                    vc[i] = 0
                    vt[i] = 0
                    dc[i] = 0

            if vc[i] != vp[i]:
                vp[i] = vc[i]
                set_pwm()                       


def display_control(x):
    global lcd, ch, sig
    global vc, dac, ddc, vt, ac, dc, di, dt, m1, m2, vp, cja, cjd

    display_ch()

    display_big_numbers(vc[ch])



timer0=Timer()
timer2=Timer()
timer4=Timer()

timer0.init(freq=2,  callback=running)
timer2.init(freq=10, callback=speed_control)   
timer4.init(freq=2,  callback=display_control)


print ('*************************************')
print ('**                                 **') 
print ('**  Test de commande externe       **')
print ('**  (dans ce cas, via le clavier)  **')
print ('**                                 **') 
print ('*************************************')
di[0]  = 1
dt[0]  = 1
# set_speed(number=0, speed=0, acceleration=10, deceleration=12, direction=0)
while 1:
    if dt[0] == 1:
        print ('*** Marche avant ***')
    else:    
        print ('*** Marche arrière ***')
    print ('Taper <enter> pour démarrer et accélérer')
    input()
    set_speed(speed=400, acceleration=10)
    print ('Taper <enter> pour freiner et arrêter')
    input()
    set_speed(speed=0, deceleration=10) 
    print ("Taper <enter> pour recommencer dans l'autre sens")
    input()
    dt[0]  = dt[0] * -1 # target direction
    set_speed(direction=dt[0])
    

Bibliothèque à importer : ssd1306.py

    
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces

from micropython import const
import framebuf


# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xA4)
SET_NORM_INV = const(0xA6)
SET_DISP = const(0xAE)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xA0)
SET_MUX_RATIO = const(0xA8)
SET_COM_OUT_DIR = const(0xC0)
SET_DISP_OFFSET = const(0xD3)
SET_COM_PIN_CFG = const(0xDA)
SET_DISP_CLK_DIV = const(0xD5)
SET_PRECHARGE = const(0xD9)
SET_VCOM_DESEL = const(0xDB)
SET_CHARGE_PUMP = const(0x8D)

# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
    def __init__(self, width, height, external_vcc):
        self.width = width
        self.height = height
        self.external_vcc = external_vcc
        self.pages = self.height // 8
        self.buffer = bytearray(self.pages * self.width)
        super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
        self.init_display()

    def init_display(self):
        for cmd in (
            SET_DISP | 0x00,  # off
            # address setting
            SET_MEM_ADDR,
            0x00,  # horizontal
            # resolution and layout
            SET_DISP_START_LINE | 0x00,
            SET_SEG_REMAP | 0x01,  # column addr 127 mapped to SEG0
            SET_MUX_RATIO,
            self.height - 1,
            SET_COM_OUT_DIR | 0x08,  # scan from COM[N] to COM0
            SET_DISP_OFFSET,
            0x00,
            SET_COM_PIN_CFG,
            0x02 if self.width > 2 * self.height else 0x12,
            # timing and driving scheme
            SET_DISP_CLK_DIV,
            0x80,
            SET_PRECHARGE,
            0x22 if self.external_vcc else 0xF1,
            SET_VCOM_DESEL,
            0x30,  # 0.83*Vcc
            # display
            SET_CONTRAST,
            0xFF,  # maximum
            SET_ENTIRE_ON,  # output follows RAM contents
            SET_NORM_INV,  # not inverted
            # charge pump
            SET_CHARGE_PUMP,
            0x10 if self.external_vcc else 0x14,
            SET_DISP | 0x01,
        ):  # on
            self.write_cmd(cmd)
        self.fill(0)
        self.show()

    def poweroff(self):
        self.write_cmd(SET_DISP | 0x00)

    def poweron(self):
        self.write_cmd(SET_DISP | 0x01)

    def contrast(self, contrast):
        self.write_cmd(SET_CONTRAST)
        self.write_cmd(contrast)

    def invert(self, invert):
        self.write_cmd(SET_NORM_INV | (invert & 1))

    def show(self):
        x0 = 0
        x1 = self.width - 1
        if self.width == 64:
            # displays with width of 64 pixels are shifted by 32
            x0 += 32
            x1 += 32
        self.write_cmd(SET_COL_ADDR)
        self.write_cmd(x0)
        self.write_cmd(x1)
        self.write_cmd(SET_PAGE_ADDR)
        self.write_cmd(0)
        self.write_cmd(self.pages - 1)
        self.write_data(self.buffer)


class SSD1306_I2C(SSD1306):
    def __init__(self, width, height, i2c, addr=0x3C, external_vcc=False):
        self.i2c = i2c
        self.addr = addr
        self.temp = bytearray(2)
        self.write_list = [b"\x40", None]  # Co=0, D/C#=1
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.temp[0] = 0x80  # Co=1, D/C#=0
        self.temp[1] = cmd
        self.i2c.writeto(self.addr, self.temp)

    def write_data(self, buf):
        self.write_list[1] = buf
        self.i2c.writevto(self.addr, self.write_list)


class SSD1306_SPI(SSD1306):
    def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
        self.rate = 10 * 1024 * 1024
        dc.init(dc.OUT, value=0)
        res.init(res.OUT, value=0)
        cs.init(cs.OUT, value=1)
        self.spi = spi
        self.dc = dc
        self.res = res
        self.cs = cs
        import time

        self.res(1)
        time.sleep_ms(1)
        self.res(0)
        time.sleep_ms(10)
        self.res(1)
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs(1)
        self.dc(0)
        self.cs(0)
        self.spi.write(bytearray([cmd]))
        self.cs(1)

    def write_data(self, buf):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs(1)
        self.dc(1)
        self.cs(0)
        self.spi.write(buf)
        self.cs(1)


 ↑  Retourner en début de page
Page précédente : Informatique, électronique et train miniature (2/4)
Page suivante : Informatique, électronique et train miniature (4/4)

© 2024 Quintilien